A site for medical students - Practical,Theory,Osce Notes

Pathophysiology of Hypercalcemia of Malignancy

Hypercalcemia of malignancy is a common paraneoplastic syndrome and is associated with a poor prognosis. It occurs in up to 30% of patients with cancer at some point during the course of their disease. The pathophysiology of hypercalcemia in malignancy is multifaceted, involving several mechanisms that ultimately increase serum calcium levels.

Local Osteolytic Hypercalcemia:

Local osteolytic hypercalcemia is seen commonly in cancers that metastasize to bone, such as breast cancer, lung cancer, and multiple myeloma. In these instances, the tumor cells produce factors that stimulate osteoclast activity, resulting in excessive bone resorption. This process leads to the release of large amounts of calcium into the circulation. Key cytokines involved include Interleukin-6 (IL-6), tumor necrosis factor (TNF), and receptor activator of nuclear factor-kappa B ligand (RANKL).

Humoral Hypercalcemia of Malignancy:

Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and accounts for the majority of hypercalcemia cases in cancer patients. This occurs when tumor cells produce and secrete a parathyroid hormone-related protein (PTHrP) that acts on the bone and kidneys in a similar way to parathyroid hormone (PTH). PTHrP binds to the PTH/PTHrP receptor in these tissues, leading to an increase in bone resorption and renal calcium reabsorption, ultimately raising serum calcium levels. Additionally, PTHrP inhibits renal phosphate reabsorption, contributing to the hypercalcemia by decreasing the formation of calcium phosphate product. HHM is most commonly seen in squamous cell carcinomas of the lung, head and neck, and in genitourinary tumors such as renal cell carcinoma.

Production of 1,25-Dihydroxyvitamin D:

Some lymphomas and granulomatous diseases (e.g., sarcoidosis) can produce 1,25-dihydroxyvitamin D (calcitriol), the active form of vitamin D. This occurs due to the expression of the 1-alpha-hydroxylase enzyme by the malignant cells. Calcitriol acts on the intestine to increase the absorption of dietary calcium, and on the bone to increase bone resorption, both of which contribute to hypercalcemia.

Clinical Consequences and Management:

Hypercalcemia can have numerous effects on the body, with symptoms including fatigue, polyuria, polydipsia, constipation, and changes in mental status. Severe hypercalcemia is a medical emergency and requires prompt treatment. The management of hypercalcemia of malignancy typically involves intravenous hydration, the use of drugs such as bisphosphonates to inhibit bone resorption, and measures to address the underlying malignancy. Novel therapeutic strategies are being explored, such as the use of denosumab, a RANKL antibody, particularly in cases resistant to bisphosphonates.

The pathophysiology of hypercalcemia of malignancy is complex and depends on the specific type of malignancy and its interaction with bone, kidney, and intestinal calcium handling. Understanding these mechanisms is critical to effectively manage this condition and mitigate its significant impact on patient quality of life and overall prognosis. Further research into novel therapeutic targets, like the PTHrP pathway and RANKL, could potentially provide new avenues for the treatment of this condition.

The above answers the below questions 

  1. What mechanisms are involved in the pathogenesis of hypercalcemia of malignancy?
  2. How does local osteolytic hypercalcemia occur in cancers that metastasize to bone?
  3. Explain the role of parathyroid hormone-related protein (PTHrP) in humoral hypercalcemia of malignancy (HHM).
  4. How do some lymphomas and granulomatous diseases lead to hypercalcemia via the production of 1,25-dihydroxyvitamin D (calcitriol)?
  5. What are the symptoms and potential treatment strategies for hypercalcemia of malignancy?